История возникновения GPS
К началу 70-х годов оказалось, что стоявшая в то время на вооружении армии США спутниковая навигационная система TRANSIT имела существенные недостатки:
- относительно невысокая точность определения координат;
- большие промежутки времени между наблюдениями.
С целью преодоления этих недостатков было принято решение начать работы над созданием спутниковой навигационной системы нового поколения. Первоначально она называлась NAVSTAR (NAVigation Satellite providing Time And Range), т.е. “навигационная спутниковая система, обеспечивающая измерение времени и местоположения” (сейчас можно встретить двойное название: GPS-NAVSTAR). Основным назначением NAVSTAR была высокоточная навигация военных объектов. Непосредственная реализация программы началась в середине 1977 г. с запуском первого спутника. С 1983 г. система открыта для использования в гражданских целях, а с 1991 г. сняты ограничения на продажу GPS-оборудования в страны бывшего СССР.
В 1993 г. система была полностью развернута. Затраты на ее реализацию превысили 15 млрд. USD. В России действует аналогичная система спутниковой навигации ГЛОНАСС (ГЛОбальная НАвигационная Спутниковая Система), принцип работы которой во многом подобен GPS.
Первоначально предполагалось использовать систему GPS только в навигационных целях, но исследования, проведенные учеными Массачусетского технологического института в 1976 - 1978 г.г., показали возможность геодезического применения GPS, т.е. определения координат с миллиметровой точностью. С того времени началось использование системы для выполнения геодезических измерений. Мы остановимся, в основном, на этом аспекте использования системы, хотя на практике она находит применение для решения значительно более широкого круга задач.
Общий принцип работы
В околоземном пространстве развернута сеть искусственных спутников Земли (ИСЗ), равномерно “покрывающих” всю земную поверхность . Орбиты ИСЗ вычисляются с очень высокой точностью, поэтому в любой момент времени известны координаты каждого спутника. Радиопередатчики спутников непрерывно излучают сигналы в направлении Земли. Эти сигналы принимаются GPS-приемником, находящемся в некоторой точке земной поверхности, координаты которой нужно определить.
В приемнике измеряется время распространения сигнала от ИСЗ и вычисляется дальность “спутник-приемник” (радиосигнал, как известно, распространяется со скоростью света). Поскольку для определения местоположения точки нужно знать три координаты (плоские координаты X, Y и высоту H), то в приемнике должны быть измерены расстояния до трех различных ИСЗ . Очевидно, при таком методе радионавигации (он называется беззапросным) точное определение времени распространения сигнала возможно лишь при наличии синхронизации временных шкал спутника и приемника.
Поэтому в состав аппаратуры ИСЗ и приемника входят эталонные часы (стандарты частоты), причем точность спутникового эталона времени исключительно высока (долговременная относительная стабильность частоты обеспечивается на уровне 10-13 - 10-15 за сутки). Бортовые часы всех ИСЗ синхронизированы и привязаны к так называемому “системному времени”. Эталон времени GPS- приемника менее точен, чтобы чрезмерно не повышать его стоимость. Этот эталон должен обеспечивать только кратковременную стабильность частоты - в течение процедуры измерений.
На практике в измерениях времени всегда присутствует ошибка, обусловленная несовпадением шкал времени ИСЗ и приемника. По этой причине в приемнике вычисляется искаженное значение дальности до спутника или “псевдодальность”. Измерения расстояний до всех ИСЗ, с которыми в данный момент работает приемник, происходит одновременно. Следовательно, для всех измерений величину временного несоответствия можно считать постоянной. С математической точки зрения это эквивалентно тому, что неизвестными являются не только координаты X,Y и H, но и поправка часов приемника D t. Для их определения необходимо выполнить измерения псевдодальностей не до трех, а до четырех спутников. В результате обработки этих измерений в приемнике вычисляются координаты (X,Y и H) и точное время. Если приемник установлен на движущемся объекте и наряду с псевдодальностями измеряет доплеровские сдвиги частот радиосигналов, то может быть вычислена и скорость объекта. Таким образом, для выполнения необходимых навигационных определений надо обеспечить постоянную видимость с нее, как минимум, четырех спутников. После полного развертывания созвездия ИСЗ в любой точке Земли могут быть видны от 5 до 12 спутников в произвольный момент времени. Современные GPS-приемники имеют от 5 до 12 каналов, т.е. могут одновременно принимать сигналы от такого количества ИСЗ. Избыточные измерения (сверх четырех) позволяют повысить точность определения координат и обеспечить непрерывность решения навигационной задачи.
В состав системы входят:
- созвездие ИСЗ (космический сегмент);
- сеть наземных станций слежения и управления (сегмент управления);
- собственно GPS-приемники (аппаратура потребителей).
Космический сегмент
Состоит из 26 спутников (21 основной и 5 запасных), которые обращаются на 6 орбитах . Плоскости орбит наклонены на угол около 55° к плоскости экватора и сдвинуты между собой на 60° по долготе. Радиусы орбит - около 26 тыс. км, а период обращения - половина звездных суток (примерно 11 ч. 58 мин.). На борту каждого спутника имеется 4 стандарта частоты (два цезиевых и два рубидиевых - для целей резервирования), солнечные батареи, двигатели корректировки орбит, приемо-передающая аппаратура, компьютер.
Передающая аппаратура спутника излучает синусоидальные сигналы на двух несущих частотах: L1=1575,42 МГц и L2=1227,6 МГц. Перед этим сигналы модулируются так называемыми псевдослучайными цифровыми последовательностями (точнее, эта процедура называется фазовой манипуляцией). Причем частота L1 модулируется двумя видами кодов: C/A-кодом (код свободного доступа) и P-кодом (код санкционированного доступа), а частота L2- только P-кодом. Кроме того, обе несущие частоты дополнительно кодируются навигационным сообщением, в котором содержатся данные об орбитах ИСЗ, информация о параметрах атмосферы, поправки системного времени .
Кодирование излучаемого спутником радиосигнала преследует несколько целей:
- обеспечение возможности синхронизации сигналов ИСЗ и приемника;
- создание наилучших условий различения сигнала в аппаратуре приемника на фоне шумов (доказано, что псевдослучайные коды обладают такими свойствами);
- реализация режима ограниченного доступа к GPS, когда высокоточные измерения возможны лишь при санкционированном использовании системы.
Код свободного доступа C/A (Coarse Acquisition) имеет частоту следования импульсов (иначе называемых “чипами”) 1,023 МГц и период повторения 0,001 сек., поэтому его декодирование в приемнике осуществляется достаточно просто. Однако точность автономных измерений расстояний с его помощью невысока.
Защищенный код P (Protected) характеризуется частотой следования импульсов 10,23 МГц и периодом повторения 7 суток. Кроме того, раз в неделю происходит смена этого кода на всех спутниках. Поэтому до недавнего времени измерения по P-коду могли выполнять только пользователи, получившие разрешение Министерства обороны США. Однако и это “тайное” стало “явным” в результате утечки секретной информации, после чего к P-коду получил доступ широкий круг специалистов. Американское оборонное ведомство предприняло меры дополнительной защиты P-кода: в любой момент без предупреждения может быть включен режим AS (Anti Spoofing). При этом выполняется дополнительное кодирование P-кода, и он превращается в Y-код. Расшифровка Y-кода возможна только аппаратно, с использованием специальной микросхемы (криптографического ключа), которая устанавливается в GPS- приемнике.
Кроме того, для снижения точности определения координат несанкционированными пользователями предусмотрен так называемый “режим выборочного доступа” SA (Selective Availability). При включении этого режима в навигационное сообщение намеренно вводится ложная информация о поправках к системному времени и орбитах ИСЗ, что приводит к снижению точности навигационных определений примерно в 3 раза.
Поскольку P- код передается на двух частотах (L1 и L2), а C/A-код - на одной (L1), в GPS-приемниках, работающих по P-коду, частично компенсируется ошибка задержки сигнала в ионосфере, которая зависит от частоты сигнала. Точность автономного определения расстояния по P- коду примерно на порядок выше, чем по C/A-коду.
Сегмент управления
Содержит главную станцию управления (авиабаза Фалькон в шт. Колорадо), пять станций слежения, расположенных на американских военных базах на Гавайских островах, островах Вознесения, Диего - Гарсия, Кваджелейн и Колорадо- Спрингс и три станции закладки:острова Вознесения, Диего - Гарсия, Кваджелейн . Кроме того, имеется сеть государственных и частных станций слежения за ИСЗ, которые выполняют наблюдения для уточнения параметров атмосферы и траекторий движения спутников.
Собираемая информация обрабатывается в суперкомпьютерах и периодически передается на спутники для корректировки орбит и обновления навигационного сообщения.
Аппаратура потребителей
В аппаратуре потребителя (GPS-приемнике) принимаемый сигнал декодируется, т.е. из него выделяются кодовые последовательности C/A либо C/A и P, а также служебная информация. Полученный код сравнивается с аналогичным кодом, который генерирует сам GPS-приемник, что позволяет определить задержку распространения сигнала от спутника и таким образом вычислить псевдодальность. После захвата сигнала спутника аппаратура приемника переводится в режим слежения, т.е. в БПС поддерживается синхронизм между принимаемым и опорным сигналами. Процедура синхронизации может выполняться:
- по C/A-коду (одночастотный кодовый приемник),
- по Р – коду (двухчастотный кодовый приемник),
- по C/A-коду и фазе несущего сигнала (одночастотный фазовый приемник),
- по Р - коду и фазе несущего сигнала (двухчастотный фазовый приемник).
Используемый в GPS-приемнике способ синхронизации сигналов является едва ли не важнейшей его характеристикой.
Способы наблюдений
Сложная структура сигнала, передаваемого от ИСЗ к приемнику, обусловила многообразие способов его обработки и наблюдений.
Кодовые наблюдения реализуются в самых простых по конструкции GPS-приемниках. Из принятого со спутника сигнала частоты L1 выделяется C/A-код (тогда приемник называется одночастотным) или из частотных сигналов L1 и L2 выделяется P-код (двухчастотный приемник). Производится сравнение соответствующего кода с эталонным кодом, который генерирует сам приемник. Точность определения координат при этом составляет:
- для одночастотного (L1) приемника - 100м;
- для двухчастотного (L1, L2) приемника - 16м.
Значения точностей приведены для неблагоприятного режима измерений, когда включен режим “ограниченного доступа” SA.
Фазовые наблюдения выполняются для повышения точности измерений. В этом случае при сравнении принятого со спутника сигнала и его эталона, генерируемого в приемнике, учитывается не только код, но и фаза несущей частоты (L1 или L2). Поскольку период несущей частоты в сотни (для P-кода) и тысячи (для C/A-кода) раз меньше периодов кодовых последовательностей, точность процедуры сравнения значительно повышается, а, следовательно, возрастает точность измерения координат. Однако в этом случае возникает проблема целочисленной фазовой неоднозначности, поскольку отсутствует информация о количестве целых периодов информационного сигнала, укладывающихся на пути ИСЗ - приемник. Непосредственно можно измерить только дробную часть фазовой задержки сигнала (в пределах одного периода). Для решения этой проблемы используют несколько способов:
- классический двухэтапный метод измерений, который предполагает на первом этапе выполнение большого количества избыточных измерений, а на втором - статистический анализ полученных данных и определение наиболее вероятного значения фазовой неоднозначности;
- модификация классического метода, которая отличается тем, что при обработке результатов измерений производится многоэтапная калмановская фильтрация и выбирается группа фильтров Калмана с оптимальными свойствами;
- метод замены антенн, когда наблюдения выполняются двумя различными приемниками на двух пунктах в две различные эпохи. При измерениях во вторую эпоху производится замена антенн приемников;
- метод определения неоднозначности “в пути”, когда для определения целого числа периодов используют линейные комбинации сигналов L1 и L2 (суммы и разности).
Источники ошибок
На точность определения координат существенное влияние оказывают ошибки, возникающие при выполнении процедуры измерений. Природа этих ошибок различна.
- Неточное определение времени. При всей точности временных эталонов ИСЗ существует некоторая погрешность шкалы времени аппаратуры спутника. Она приводит к возникновению систематической ошибки определения координат около 0.6 м.
- Ошибки вычисления орбит. Появляются вследствие неточностей прогноза и расчета эфемерид спутников, выполняемых в аппаратуре приемника. Эта погрешность также носит систематический характер и приводит к ошибке измерения координат около 0.6 м.
- Инструментальная ошибка приемника. Обусловлена, прежде всего, наличием шумов в электронном тракте приемника. Отношение сигнал/шум приемника определяет точность процедуры сравнения принятого от ИСЗ и опорного сигналов, т.е. погрешность вычисления псевдодальности. Наличие данной погрешности приводит к возникновению координатной ошибки порядка 1.2 м.
- Многопутность распространения сигнала. Появляется в результате вторичных отражений сигнала спутника от крупных препятствий, расположенных в непосредственной близости от приемника. При этом возникает явление интерференции, и измеренное расстояние оказывается больше действительного. Аналитически данную погрешность оценить достаточно трудно, а наилучшим способом борьбы с нею считается рациональное размещение антенны приемника относительно препятствий. В результате воздействия этого фактора ошибка определения псевдодальности может увеличиться на 2.0 м.
- Ионосферные задержки сигнала. Ионосфера – это ионизированный атмосферный слой в диапазоне высот 50 – 500 км, который содержит свободные электроны. Наличие этих электронов вызывает задержку распространения сигнала спутника, которая прямо пропорциональна концентрации электронов и обратно пропорциональна квадрату частоты радиосигнала. Для компенсации возникающей при этом ошибки определения псевдодальности используется метод двухчастотных измерений на частотах L1 и L2 (в двухчастотных приемниках). Линейные комбинации двухчастотных измерений не содержат ионосферных погрешностей первого порядка. Кроме того, для частичной компенсации этой погрешности может быть использована модель коррекции, которая аналитически рассчитывается с использованием информации, содержащейся в навигационном сообщении. При этом величина остаточной немоделируемой ионосферной задержки может вызывать погрешность определения псевдодальности около 10 м.
- Тропосферные задержки сигнала. Тропосфера – самый нижний от земной поверхности слой атмосферы (до высоты 8 – 13 км). Она также обуславливает задержку распространения радиосигнала от спутника. Величина задержки зависит от метеопараметров (давления, температуры, влажности), а также от высоты спутника над горизонтом. Компенсация тропосферных задержек производится путем расчета математической модели этого слоя атмосферы. Необходимые для этого коэффициенты содержатся в навигационном сообщении. Тропосферные задержки вызывают ошибки измерения псевдодальностей в 1 м.
- Геометрическое расположение спутников. При вычислении суммарной ошибки необходимо еще учесть взаимное положение потребителя и спутников рабочего созвездия. Для этого вводится специальный коэффициент геометрического ухудшения точности PDOP (Position Dilution Of Precision), на который необходимо умножить все перечисленные выше ошибки, чтобы получить результирующую ошибку. Величина коэффициента PDOP зависит от взаимного расположения спутников и приемника. Она обратно пропорциональна объему фигуры, которая будет образована, если провести единичные векторы от приемника к спутникам. Большое значение PDOP говорит о неудачном расположении ИСЗ и большой величине ошибки. На приведены примеры удачного (а) и неудачного (б) геометрического положения спутников. Типичное среднее значение PDOP колеблется от 4 до 6.
Дифференциальный режим GPS
Наиболее эффективным средством исключения ошибок является дифференциальный способ наблюдений - DGPS (Differential GPS). Его суть состоит в выполнении измерений двумя приемниками: один устанавливается в определяемой точке, а другой - в точке с известными координатами - базовой (контрольной) станции.
Поскольку расстояние от ИСЗ до приемников значительно больше расстояния между самими приемниками, то считают, что условия приема сигналов обоими приемниками практически одинаковы. А, следовательно, величины ошибок также будут близки. В режиме DGPS измеряют не абсолютные координаты первого приемника, а его положение относительно базового (вектор базы). Использование дифференциального режима позволяет практически полностью исключить влияние режима SA и довести точность кодовых измерений до десятков сантиметров, а фазовых - до единиц миллиметров. Наилучшие показатели имеют фазовые двухчастотные приемники. Они отличаются от фазовых одночастотных более высокой точностью, более широким диапазоном измеряемых векторов баз и большей скоростью и устойчивостью измерений. Однако современные технологические достижения позволяют одночастотным фазовым приемникам по характеристикам приблизиться к двухчастотным.
Одной из особенностей режима DGPS является необходимость передачи дифференциальных поправок от базового приемника к определяемому. При этом различают два метода корректировки информации:
- Метод коррекции координат, когда на станции и в определяемой точке наблюдают одни и те же ИСЗ, а затем в качестве дифференциальных поправок с базовой станции передают добавки к измеренным в определяемом пункте координатам. Недостатком этого метода является то, что приемники базового и определяемого пунктов должны работать по одному рабочему созвездию. Это неудобно, поскольку все потребители, использующие дифференциальные поправки должны работать по одним и тем же ИСЗ. В этом случае не обеспечивается наилучшее значение PDOP во всех определяемых пунктах.
- Метод коррекции навигационных параметров, при использовании которого на базовой станции определяются поправки к измеряемым параметрам (например, псевдодальностям) для всех спутников, которые потенциально могут быть использованы потребителями. Эти поправки передаются на определяемые пункты, где уже непосредственно в GPS - приемнике вычисляются поправки к координатам. Недостатком этого метода является повышение сложности аппаратуры потребителей
.Метод DGPS может быть использован двояко. Если необходимо вычислять координаты в режиме реального времени, то необходим надежный радиоканал для передачи дифференциальных поправок, а в состав GPS - приемника должен входить радиомодем. Если же передача поправок не выполняется, то можно использовать режим постобработки. В этом случае результаты измерений обоих приемников записываются на устройства памяти приемников (например, магнитные карты), а после прекращения измерений накопленная информация обрабатывается специальным ПО и вычисляется точное значение вектора базы.
Передача дифференциальных поправок по радиоканалу может выполняться по выделенным частотным линиям, на частотах любительских радиостанций, по системам спутниковой связи (например, INMARSAT), а также с использованием технологии передачи цифровых данных RDS (Radio Data System) на частотах FM - радиостанций. Причем иногда даже нет необходимости иметь GPS - приемник на базовой станции, поскольку во многих странах уже действует развитая сеть DGPS - станций, постоянно транслирующих поправки на определенную территорию. Например, в прибрежной зоне Северной Америки, Европы, Австралии и Новой Зеландии развернуты сети радиомаяков для морской DGPS -навигации. Американская корпорация DCI (Differential Corrections Inc.) распространяет дифференциальные поправки на всю континентальную часть США, используя для ретрансляции радиосигналов спутники связи Galaxy. Подобные сети станций действуют и на территориях многих европейских стран.
Примером подобной сети может служить шведская сеть станций DGPS, которая носит название SWEPOS. В ее состав входят 21 станция (Reference Station).
Станции равномерно разбросаны по всей территории Швеции . Координаты точек земной поверхности вычисляются в системе SWEREF 93, которая является шведским вариантом EUREF 89. Система SWEREF 93 с точностью до метра совпадает с WGS 84. Кроме того, точно известны параметры перехода в национальную плановую (RT 90) и высотную (RH 70) системы координат. Система SWEPOS может использоваться как в реальном времени, так и в режиме постобработки. Для определения координат в режиме реального времени могут использоваться сигналы только двенадцати станций. На этих станциях (SWEPOS reference station) непрерывно производятся GPS-измерения, а их результаты передаются в центр управления (Control Centre). Полученные дифференциальные GPS- поправки передаются пользователям системы на FM – частотах через систему Epos компании Teracom (Kaknä s tower) и ретранслятор (P3 transmitter).
При этом достигается точность определения плановых координат на уровне метра. Кроме того, точность зависит от типа сервиса Epos: базовый (Basic) или улучшенный (Premium). Доступ к системе SWEPOS осуществляется по подписке.
Для определения координат точек местности в режиме постобработки необходимо иметь данные не менее, чем четырех станций SWEPOS. При этом может быть достигнута сантиметровая точность результатов в координатной системе SWEREF 93. При этом продолжительность измерений двухчастотным приемником должна быть не менее двух часов. Вообще, точность измерений зависит от длительности измерений, типа приемника и антенны, а также программного обеспечения, используемого для обработки данных. Например, при использовании одночастотного фазового приемника можно получить метровую точность результатов при продолжительности измерений порядка нескольких минут. Данные о дифференциальных
GPS-поправках, полученные после обработки сигналов всех станций, доступны пользователям (User) спустя 4 часа после окончания измерений. Информация может быть передана с центра управления (Control Centre) через Internet или по каналам модемной связи.
Примером глобальной сети DGPS- поправок может служить система OmniSTAR . Она использует сеть станций для сбора информации об ошибках, вводимых в GPS- сигнал Министерством обороны США.
Собранные данные распределяются одним из центров управления сетью . Всего существует 3 центра управления сетью OmniSTAR по всему миру. Оттуда данные передаются на борт к одному из семи геостационарных спутников , распределенных по всей земной поверхности. Далее каждый спутник передает данные о дифференциальных GPS- поправках в пределах своей области обслуживания . Сигналы поправок системы OmniSTAR могут быть получены через радиоканал GPS- приемником и доступны по подписке.
Сеть OmniSTAR обладает устойчивостью и избыточностью:
- Все станции сбора информации имеют дублированные каналы связи с соответствующим центром управления сетью;
- Европейский спутник использует два канала, переключение между которыми осуществляется автоматически;
- Европейский континент имеет два уровня обслуживания дифференциальными GPS- поправками;
- Формируемые системой OmniSTAR поправки не зависят от какой- либо конкретной станции;
- Сигнал системы OmniSTAR сигнал не подвержен влиянию гроз или электрических полей.
Работа сети непрерывно контролируется центрами управления сетью. Имеются два различных типа подписки на систему OmniSTAR: VBS (Virtual Base Station) и VRC (Virtual Reference Cell).
VBS - подписка. Внутри приемника рассчитывается оптимальная для данного положения приемника дифференциальная поправка. При этом используется информация от всех станций сбора данных. Такая методика называется технологией Виртуальной Базовой Станции (VBS). Использование VBS-подписки гарантирует суб-метровую точность в пределах большой области и обеспечивает избыточность системы. Величины поправок не зависят от сигналов какой-либо конкретной станции- выполняется интегрированная обработка сигналов от всех станций. В свою очередь, VBS- подписка подразделяется на такие типы:
- OmniSTAR VBS 2000 - может использоваться в любой точке европейской зоны действия системы;
- OmniSTAR VBS 200 - доступна в пределах круга радиусом 200 км. Локализация центра круга может быть определена пользователем.
- OmniSTAR VBS 20 - может использоваться в круге с радиусом 20 км. Локализация центра круга также определяется пользователем.
VRC- подписка. Данный вид подписки является более дешевым вариантом для пользователя, постоянно работающего в пределах ограниченной территории. При этом для формирования сигналов дифференциальных поправок используются сигналы всех станций, но поправки пересчитываются не на любую точку местонахождения пользователя, а только на одну указанную пользователем точку. С удалением от этой точки точность ухудшается. Зона действия системы OmniSTAR захватывает почти всю поверхность земного шара.
Система подписки достаточно гибка. Для постоянных пользователей системы используется годовая подписка. Для тех, кто не использует сигнал OmniSTAR постоянно, доступны 100, 200 или 300- часовые подписки. Учет наработанного времени ведется с помощью электронного счетчика, встроенного в приемник. Для тестирования приемника пользователем при его покупке счетчик выставляется на 20 ч. Возобновление или продление подписки можно выполнить через каналы спутниковой связи.
Приемники системы OmniSTAR. Ряд DGPS приемников 3000L представляет собой результат многолетних научно-исследовательских работ. Приемники выполнены по самой последней технологии. Они имеют высокий уровень интеграции и высокий уровень помехозащищенности. На рынке представлено несколько разновидностей данного ряда приемников:
3000LR - полнофункциональный приемник, помещающийся в полевой сумке. Имеет дисплей и набор кнопок для ввода команд оператора кнопки, вход антенны, входы/ выходы источника питания и интерфейса для обмена данных.
3000LR8 - в добавление к предыдущей модели содержит встроенный 8-канальный GPS- приемник.
3000LR12 - аналогичен 3000LR8, только имеет 12- канальный приемник.
Другим классом приемников системы OmniSTAR являются полнофункциональные модульные OEM- приемники, которые устанавливаются как блоки в составе другого оборудования. Например, приемник 3000LM имеет вход антенны, входы/ выходы источника питания и интерфейса для обмена данных, а также светодиодные индикаторы состояния прибора. Другие разновидности приемников этого класса - 3000LCC и 3000LCE.
Новый приемник 7000L представляет собой полнофункциональный DGPS- приемник со встроенной антенной. Он может устанавливаться на крыше автомобиля.
Приемники системы OmniSTAR позволяют выполнять настройку и управлять конфигурацией через порт ввода/вывода, т.е. система, в состав которой входит такой приемник, способна управлять им через программное обеспечение. Кроме того, через тот же самый порт может осуществляться ввод/вывод данных.
В случае, когда пользователь работает в зоне действия более, чем одного центра управления сетью, система автоматически производит необходимые переключения в соответствии с текущим положением пользователя. На участках земной поверхности, где сигнал системы резервируется, могут осуществляться автоматические переключения пользователя на резервное обслуживание, если основной сигнал передается с помехами.
В настоящее время ведутся работы по реализации общеевропейского радионавигационного плана. Разработан специальный стандарт пересылки поправок DGPS, который называется RTCM SC - 104. Все производители GPS - приемников используют его для реализации дифференциального режима работы своей аппаратуры.
В геодезических приложениях нашли применение исключительно дифференциальные методы GPS - измерений, поскольку только с их использованием возможно определение координат точек местности с требуемой точностью.
Имеется несколько методов выполнения наблюдений. Выбор конкретного метода зависит от следующих факторов:
- требуемый уровень точности;
- технические возможности приемника и наличие соответствующего программного обеспечения;
- характер окружающей местности и метеоусловия (радиопомехи, рельеф, гроза);
- наличие ограничений на переезд между наблюдаемыми пунктами и расстояние между ними;
- конфигурация спутниковой системы и количество наблюдаемых спутников, наличие средств связи
.Для решения различных задач: определения точных координат отдельных точек, последовательных измерений местоположения множества точек, непрерывных координатных определений в процессе движения автомобиля и др. - в рамках DGPS- режима разработан ряд методов выполнения измерений. Эти методы отличаются технологией выполнения работ и получаемой точностью вычисления вектора базы.
Статический метод (Static Positioning)
Название метода означает, что приемники не перемещаются в течение всего наблюдательного интервала. Базовый приемник и приемник с неизвестными координатами одновременно выполняют наблюдения и записывают данные в течение 15 минут - 3 часов. Такая длительность сессии вызвана необходимостью определения целочисленной неоднозначности фаз в начале сессии. Этому способствует и заметное изменение со временем конфигурации спутниковой системы. Одночастотные приемники используются для измерения баз длиной до 10-15 км, а двухчастотные - для баз длиннее 15 км (преимущества двухчастотных приемников заключаются в возможности адекватного моделирования эффекта воздействия ионосферы, а также меньшей продолжительности наблюдений для достижения заданной точности). После завершения сеансов наблюдений данные, полученные каждым приемником, собираются вместе, вводятся в компьютер и обрабатываются с помощью специальных программ с целью определения неизвестных координат пунктов.
Точность метода при использовании фазовых наблюдений:
- для двухчастотных приемников (5 спутников и две эпохи (2 сек ) наблюдений):
- в плане: 20 мм + 1 мм/км * D;
- по высоте: 20 мм + 2 мм/км * D;
- для одночастотных приемников:
- в плане: 20 мм + 2 мм/км * D;
- по высоте: 20 мм + 2 мм/км * D.
Данный метод используют для решения задач контроля национальных и континентальных геодезических сетей, мониторинга тектонических движений земной поверхности, наблюдения за состоянием дамб, фундаментов атомных электростанций и др. сооружений.
Псевдостатический метод (Pseudo-Static Positioning)
Отличается от статического тем, что обеспечивает более высокую производительность съемки за счет выполнения наблюдений в течение нескольких коротких сессий вместо одной длинной. Один приемник непрерывно наблюдает на базовом пункте. Перевозимый приемник после наблюдений в течение 5 - 10 минут на определяемом пункте выключается и перевозится на следующий определяемый пункт, где вновь включается на 5 -10 минут. Затем вновь выключается и перевозится на следующий пункт и т.д. Каждый определяемый пункт необходимо посетить еще раз на 5 минут через 1 час после первого посещения. Этот метод практически эквивалентен статическому, но вместо того, чтобы ожидать в течение 1 часа изменения конфигурации спутников, наблюдения проводятся в течение 5 минут, а следующие 5 минут наблюдаются одним часом позже, когда конфигурация существенно изменилась. Остающиеся 55 минут можно использовать для посещения дополнительных неизвестных пунктов. Точность получаемых результатов будет на уровне статического метода. Для наблюдений могут использоваться как одночастотные, так и двухчастотные приемники. Метод удобен, когда необходимо в течение короткого времени произвести точное измерение координат большого количества точек. Недостатком метода является необходимость точного планирования графика посещения пунктов.
Быстростатический метод (Rapid Static Positioning)
Этот метод был разработан в последние годы. Он позволил значительно увеличить производительность GPS съемки. Метод отличается от псевдостатического тем, что достаточно лишь одного посещения определяемых пунктов (в течение 5-10 минут - в зависимости от расстояния между опорным и определяемым пунктами). Поначалу, на этапе появления данного метода, для наблюдений подходили лишь двухчастотные Р- кодовые приемники. В настоящее время некоторые одночастотные приемники можно также использовать в быстростатическом режиме.
Кинематический метод “стой-иди” (Stop-and-Go Kinematic Positioning)
Метод позволяет получить положения пунктов так же быстро, как и в случае использования электронного тахеометра при решении топографических задач. Метод требует выполнения короткой процедуры инициализации с целью определения целочисленных неоднозначностей фаз. После этого опорный приемник продолжает непрерывно наблюдать на пункте с известными координатами, второй приемник перевозится (во включенном состоянии) на первый определяемый пункт, где вновь наблюдает 1 минуту. Затем он посещает все остальные определяемые пункты (лишь по одному разу).
Наиболее распространенными являются следующие процедуры инициализации:
- обмен антеннами, когда второй приемник находится на “пункте обмена” (знание его координат не обязательно), выбранном на расстоянии не более 10 м от опорного, выполняется наблюдение 4-8 эпох, затем приемники переставляются (без выключения), меняясь антеннами и наблюдают 4-8 эпох (до нескольких минут), а после происходит обратная процедура обмена антеннами и выполнение наблюдений для 4-8 эпох;
- стояние второго приемника в течение 1 минуты на втором пункте с известными координатами, причем этот второй пункт может быть на расстоянии не более 10 км от опорного пункта;
- статический метод, когда определяемый пункт выбирается на расстоянии не более 10 км от опорного пункта, а сеанс наблюдений имеет продолжительность не менее 30 минут.
Недостаток метода состоит в необходимости непрерывного (и даже во время движения) наблюдения не менее 4 спутников одновременно. Если число наблюдаемых спутников падает до трех хотя бы на миг, необходимо вернуться на последний успешно посещенный определяемый пункт или вновь провести процедуру инициализации. Во избежание этого лучше всего обеспечить возможность наблюдения одновременно пяти или более спутников.
Точность метода при использовании фазовых наблюдений:
- для двухчастотных приемников (5 спутников и две эпохи (2 сек ) наблюдений):
- в плане: 20 мм + 1 мм/км * D;
- по высоте: 20 мм + 2 мм/км * D;
- для одночастотных приемников:
- в плане: 20 мм + 2 мм/км * D;
- по высоте: 20 мм + 2 мм/км * D.
Метод эффективен при выполнении топографической съемки, когда за короткое время необходимо определить координаты большого числа точек, при построении цифровых моделей рельефа, определении местоположения объектов местности, имеющих форму ломаной линии (трубопроводы, дороги и пр.).
Кинематический метод со статической инициализацией (Kinematic with Static Initialization)
Метод очень похож на предыдущий. Точно так же на базовом пункте с известными координатами производится процедура инициализации, затем подвижный приемник перемещается в начальную точку маршрута движения и производит там наблюдения в течение нескольких минут. Далее подвижная платформа с приемником начинает движение по маршруту. GPS - измерения выполняются непрерывно во время движения с интервалом 1 сек. Точностные параметры метода те же, что и у “Stop-and-Go”. Чаще всего применяется для получения координат линейных объектов типа дорог, рек и т.д.
Кинематический метод с инициализацией “на ходу” (Kinematic with On - the Fly Initialization)
Данный метод не требует для инициализации размещения подвижного приемника на базовой станции - эта процедура выполняется непосредственно при движении транспортного средства по маршруту. Кроме того, если по какой- либо причине произошел срыв наблюдений (например, из-за проезда под железнодорожным мостом), процесс инициализации производится вновь без остановки движения. Точностные параметры и сферы использования метода не отличаются от других кинематических методов.
Примеры использования
Геодезия и кадастр
Технология GPS позволяет решать геодезические задачи самого разного уровня: от развития государственной геодезической сети до инвентаризации земельных участков. Практика показывает, что производительность труда возрастает при этом в десятки раз. В зависимости от требуемой точности определения координат, лимита времени на измерения, условий выполнения работ, применяются GPS-приемники различных типов, однако все они работают в дифференциальном режиме и являются фазовыми (за исключением, может быть, некоторых задач ГИС (Геоинформационных систем), где достаточно точности кодового приемника). Наибольшее распространение на территории СНГ получила фазовая одночастотная (L1) аппаратура, поскольку она, с одной стороны, в 2-5 раз дешевле двухчастотной, а, с другой стороны, обеспечивает точность, достаточную для решения большинства практических задач. Вот некоторые примеры использования GPS- технологий в геодезии.
Национальное управление Франции CNASEA проводит работы по созданию кадастра бывшей французской колонии Майотте. Необходимые измерения на территории 375 кв. км были выполнены за 15 дней с использованием GPS- приемников PathFinder Pro XR фирмы Trimble. При применении традиционных геодезические методов на это потребовалось бы около 15 лет.
Специалисты АО “ЗапУралТИСИЗ” использовали приемники 4000ST фирмы Trimble для проведения работ по развитию геодезической сети в г. Уфа. Бригада из двух человек построила триангуляцию из 15 пунктов за 5 дней, тогда как при использовании существующих методов геодезических измерений такую же работу выполняет бригада из пяти человек за 2 недели.
Диспетчерские службы
Очень широкое распространение в мире получили системы автоматического определения координат движущихся объектов на основе GPS или системы GPS/AVL (Automatic Vehicle Location). С их помощью на современном уровне решаются задачи диспетчеризации транспортного парка. Каждый автомобиль оснащается GPS- приемником и радиосвязным оборудованием, обеспечивающим передачу информации на диспетчерский пункт. На экране монитора диспетчера с использованием программного обеспечения ГИС формируется электронная карта территории, которая обслуживается транспортными средствами. Данные о координатах и скорости движения автомобилей, полученные по радиоканалу, позволяют отобразить их текущее положение на этой карте. Помимо координатной информации по радиосвязной линии могут передаваться сигналы различных датчиков, установленных на автомобиле и другая информация. Возможности системы:
- Диспетчер отслеживает в реальном времени перемещения всех автомобилей.
- На электронной карте выделяются зоны, при попадании автомобилей в которые подается сигнал диспетчеру.
- При отклонениях автомобилей от заданного маршрута у диспетчера срабатывает сигнализация.
- С диспетчерского пульта контролируется состояние датчиков, установленных на каждой подвижной единице: топливных, температурных, несанкционированного вскрытия контейнеров, переворачивания автомобиля, включения “мигалки” и т.д.
- Стандартные сообщения водителя могут быть запрограммированы так, что при нажатии соответствующей кнопки в автомобиле к диспетчеру поступает информация типа: “пробка на дороге”, “попал в аварию”, “задержан милицией”, “нападение”, “захват”. Эти сообщения при необходимости легко кодируются и могут использоваться в случаях, когда надо соблюдать режим радиомолчания.
- По команде с диспетчерского пункта блокируется система зажигания, двери салона автомобиля и контейнера.
- В кабине автомобиля может быть установлен специальный бортовой компьютер, работающий в режиме терминала. Кроме текстовых сообщений между водителем и диспетчером передаются специальные формы (накладные, маршрутные листы и пр.).
- Моделирующие возможности ГИС диспетчера позволяют оптимизировать маршруты доставки грузов с учетом различных факторов.
Некоторые примеры использования GPS/AVL систем приведены ниже.
Компания SonyMobileComm разработала GPS/AVL систему NVX-F160 с программным обеспечением EtakGuide. Автомобили оборудованы 8-канальными GPS- приемниками, которые опрашиваются с частотой 1 Гц. Карты 48 штатов территории США, схемы 32 главных американских дорог, планы 1000 парков и 5000 мест отдыха записаны на прилагаемом компакт-диске. Фирмы TeleAtlas и Philips Car Systems подписали соглашение о совместном производстве подобных компакт-дисков с цифровыми картами различных территорий.
Система Priority One (разработка американской фирмы Greenfield Associates), кроме стандартных AVL- функций, обеспечивает водителю приоритетный проезд через самые сложные участки дорог в пределах города. Для определения оптимального пути движения используется информация о координатах и скорости автомобиля, а также возможных альтернативных маршрутах и загруженности перекрестков. Установленный на автомобиле 12-канальный GPS- приемник фирмы Canadian Marconi обеспечивает в дифференциальном режиме точность определения координат не хуже 5 м.
Диспетчерские GPS- системы используются в службе инкассации ИНКОМБАНКа (г. Москва), некоторых управлениях МВД России и Казахстана, специальном техническом управлении МЧС России.
ГИС-приложения
Навряд ли найдется более быстрый способ определения координат множества точек на земной поверхности, чем с помощью GPS-приемника. Можно установить его антенну на крышу автомобиля и за сравнительно короткий срок уточнить расположение дорожной сети на карте. Причем получаемая информация может быть непосредственно введена в ГИС и показана на цифровой карте. Не случайно GPS-технология очень широко используется для целей ГИС.
Фирмой Trimble выпускается портативный plag-and-play GPS-приемник в стандартном формате PC-card. Приемник смонтирован в PCMCIA-карте и соединен с малогабаритной антенной (диаметр около 6 см). Антенна имеет магнитное крепление и может быть легко установлена на крышу автомобиля. Программное обеспечение Direct GPS позволяет сразу же вводить координатную информацию в цифровую карту ГИС ArcView и отображать текущее положение автомобиля на экране портативного компьютера, к которому подсоединен приемник. Это оборудование очень популярно среди американских любителей автомобильных путешествий.
Навигация
Еще на заре эры применения GPS-приемников для целей воздушной навигации были получены потрясающие результаты: более точное следование заданному маршруту полета, которое обеспечивалось использованием GPS-навигации, давало экономию топлива в десятки млн. USD в год на каждый самолет.
Известны примеры использование DGPS для реализации систем “слепой посадки” самолетов. Отклонение самолета от осевой линии ВПП не превышало 10 - 30 см. Причем, если сейчас системы, обеспечивающие надежную посадку в условиях плохой видимости, очень дороги (их могут себе позволить только крупные аэропорты), то стоимость подобной системы на основе DGPS будет по карману даже самым маленьким аэродромам. Такие системы, вероятно, давно бы стали стандартными во всем мире, если бы не непредсказуемое поведение Министерства обороны США в области GPS. Обнадеживающим является заявление американских властей о снятии с 2000 г. ограничений на использование GPS-сигналов. Кроме того, сейчас ведутся активные работы по реализации общеевропейского радионавигационного плана (скорее всего, Украина также примет в этом участие). Предусматривается развертывание в околоземном пространстве системы низкоорбитальных и геостационарных ИСЗ, которые позволят выдавать точные параметры орбит GPS-спутников и вычислять дифференциальные поправки. На поверхности Земли также будет действовать сеть станций для ретрансляции поправок в пределах всей европейской территории.
GPS-приемники используются для навигации морских судов, занимающихся ловлей лангустов у западного побережья Австралии (в 1995 г. общий объем промысла составил около 240 млн. USD). Годовая лицензия на одну ловушку стоит 15 тыс. USD, а каждый хозяин судна имеет их не менее 100. Бортовые GPS-приемники работают в дифференциальном режиме, причем для выдачи поправок используется система из 10 базовых станций (9 находятся на территории Австралии и 1 - в Новой Зеландии). Экономия топлива за счет меньших отклонений от маршрута только в течение одного сезона составляет около 10 тыс. USD. В некоторых случаях, когда теряются маркерные буи или ловушка отцепляется от троса, только точная DGPS-навигация позволяет успешно завершить поиски ловушек.
Немецкая фирма STN Atlas Elektronik GmbH разработала систему определения расположения контейнеров в порту Дубаи. Мобильные GPS-приемники серии 4000 фирмы Trimble установлены на автопогрузчиках. В башне управления портом располагается диспетчерская станция, которая осуществляет радиосвязь с погрузчиками в диапазоне УКВ. Кроме того, на каждом автопогрузчике установлен “процессор положения”, служащий для хранения и обработки информации о всех контейнерах. Высота и положение контейнера в пространстве определяется ультразвуковыми датчиками. Таким образом, на базе технологий GPS “интеллектуализируются” даже такие рутинные погрузочно-разгрузочные работы, обеспечивается оптимальное размещение контейнеров в порту.
Проблемы
В условиях Украины существуют проблемы реализации GPS- технологий. При покупке GPS- систем должны учитываться следующие моменты:
- Практически все работы, которые могут выполняться с использованием GPS, подлежат лицензированию (Постановление Кабинета Министров Украины № 1075 от 13.07.98).
- При реализации DGPS в режиме реального времени необходимо получить разрешение на использование соответствующей частоты радиодиапазона для передачи дифференциальных поправок. Лицензирование одной частоты, как известно, у нас стоит около 5 тыс. USD. Спутниковые каналы связи обходятся еще дороже. Можно, конечно, использовать любительские частотные каналы, однако при этом снижается качество передачи, что может сказаться на точности измерений.
- Некоторые западные фирмы продают GPS- приемники со встроенной аппаратурой передачи дифференциальных поправок, частоты которой фиксированы. Вполне возможно, что эти частоты у нас уже заняты, поэтому такой приемник не сможет реализовать DGPS- режим в реальном времени.
- В Украине значительное количество радиоаппаратуры различного назначения вещает в диапазоне частот L1 и L2, поэтому выполнение GPS- измерений в районах действия этой аппаратуры будет затруднено.
Перспективы использования GPS
Уже начиная с 1993 года различные государственные и научные организации США ведут исследования касательно перспектив использования GPS. В результате в 1993 г. был выпущен совместный документ Министерства обороны (МО) США и Министерства транспорта (МТ) США “Использование GPS для решения военных и гражданских задач”. В документе подчеркивается:
- финансирование всей системы будет продолжать осуществляться из бюджета МО США;
- развитие гражданских приложений будет финансироваться МТ США;
- предполагается развивать глобальные сети дифференциальных поправок DGPS (что сейчас очень активно делается);
- развитие общественных сетей DGPS будет финансироваться государственным бюджетом, а приватные сети поддерживаться не будут;
- предполагается расширить комплекс мероприятий по дальнейшему использованию GPS в целях мирового сообщества.
В исследование вопросов перспектив использования GPS включились также Национальная Академия государственного управления (NAPA - National Academy of Public Administration) и Национальный совет по научным исследованиям (NRC - National Research Council). Первая организация изучала политические вопросы использования GPS, а вторая - технические. По заказу Конгресса США были выработаны соответствующие рекомендации.
Основные рекомендации NAPA:
- Президент США должен четко определить политическую линию руководства страны в отношении дальнейшего использования GPS;
- США должны гарантировать, что и в дальнейшем использование GPS будет бесплатным;
- В ближайшее время необходимо пересмотреть политику использования режима SA как одну из мер защиты системы (она уже не столь эффективна) и предложить новые меры, которые позволят предотвратить вмешательство в работу системы нежелательных лиц (террористов, руководства агрессивных государств и т.д.);
- США должны обеспечить возможность более широкого использования GPS мировым сообществом.
- Основные рекомендации NRC:
- Необходимо выключить режим SA и дезактивировать его в течение 3-х лет;
- Режим AS нужно оставить, но распространение криптографических ключей должно выполняться электронным способом. Для этого нужно усовершенствовать метод электронного шифрования сигналов;
Направления развития системы для военных пользователей:
Приемники нового типа должны иметь возможность осуществлять захват сигнала сразу по Y- коду (без предварительного захвата сигнала С/А - кода, поскольку в военное время этот сигнал будет заглушаться);
Необходимо разработать эффективные и доступные по цене антенны и антенную электронику, которые позволят повысить устойчивость системы к помехам;
Целесообразно использовать комплексированные навигационные системы с GPS - коррекцией, что обеспечит повышение точности и помехоустойчивости навигации;
Приемники военного применения должны иметь возможность компенсировать ионосферную погрешность в условиях глушения сигнала гражданской частоты L1. Для этого необходимо совершенствовать программное обеспечение приемников.
Направления развития системы для коммерческих и иных применений:
Сигналы новых модификаций спутников класса Block II-R будут моделироваться третьей частотой L3;
Информация об орбитах спутников будет корректироваться более часто, что повысит точность навигационных определений. Предполагается снятие 48-часового эмбарго на распространение информации о точных орбитах;
Сеть наземных станций слежения будет расширена. Эти станции разместятся на авиабазах МО США либо на базах Топографической службы МО США (DMA).
Администрация Б.Клинтона 29 марта 1996 года выступила со специальным заявлением о перспективах развития GPS. В ближайшее время будут сделаны следующие шаги по совершенствованию этой системы:
- На протяжении следующего десятилетия будут сняты все военные ограничения на использование GPS. Вместо этого планируется разработать другие меры защиты национальных интересов США в отношении применения GPS (пока неизвестно, какие).
- Предполагается увеличить в 4 раза капиталовложения в систему и довести годовой оборот рынка GPS- оборудования до 8 млрд. дол. Это позволит к 2000 году создать только в США около 100 тыс. дополнительных рабочих мест.
- Даже простейшие бытовые GPS- приемники уже в недалеком будущем обеспечат возможность определения местоположения с точностью 1 м.
Литература
Сетевые спутниковые радионавигационные системы. - М.: Радио и связь, 1992.
Болдин В.А. Современные глобальные радионавигационные системы зарубежных стран. - М.: ВВИА им. Н.Е. Жуковского, 1985.
Глобальна система визначення місцеположення (GPS). Теорія і практика / Гофманн -Велленгоф Б., Ліхтенеггер Г., Коллінз Д. / Пер. з англ. під ред. Яцківа Я.С..- Київ: Наук. думка, 1995.
Неумывакин Ю.К., Перский М.И. Геодезическое обеспечение землеустроительных и кадастровых работ. Справочное пособие.- М.: Картгеоцентр - Геоиздат, 1996.
Шебшаевич В.С., Григорьев В.С., Кокина Э.Г. и др. Дифференциальный режим сетевой спутниковой радионавигационной системы // Зарубежная радиоэлектроника - 1989.- №1.- с. 5 - 45.